\(\int \sqrt {a+a \cos (c+d x)} (A+C \cos ^2(c+d x)) \sec (c+d x) \, dx\) [78]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [B] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F]
   Maxima [A] (verification not implemented)
   Giac [A] (verification not implemented)
   Mupad [F(-1)]

Optimal result

Integrand size = 33, antiderivative size = 96 \[ \int \sqrt {a+a \cos (c+d x)} \left (A+C \cos ^2(c+d x)\right ) \sec (c+d x) \, dx=\frac {2 \sqrt {a} A \text {arctanh}\left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {a+a \cos (c+d x)}}\right )}{d}+\frac {2 a C \sin (c+d x)}{3 d \sqrt {a+a \cos (c+d x)}}+\frac {2 C \sqrt {a+a \cos (c+d x)} \sin (c+d x)}{3 d} \]

[Out]

2*A*arctanh(sin(d*x+c)*a^(1/2)/(a+a*cos(d*x+c))^(1/2))*a^(1/2)/d+2/3*a*C*sin(d*x+c)/d/(a+a*cos(d*x+c))^(1/2)+2
/3*C*sin(d*x+c)*(a+a*cos(d*x+c))^(1/2)/d

Rubi [A] (verified)

Time = 0.31 (sec) , antiderivative size = 96, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.121, Rules used = {3125, 3060, 2852, 212} \[ \int \sqrt {a+a \cos (c+d x)} \left (A+C \cos ^2(c+d x)\right ) \sec (c+d x) \, dx=\frac {2 \sqrt {a} A \text {arctanh}\left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {a \cos (c+d x)+a}}\right )}{d}+\frac {2 C \sin (c+d x) \sqrt {a \cos (c+d x)+a}}{3 d}+\frac {2 a C \sin (c+d x)}{3 d \sqrt {a \cos (c+d x)+a}} \]

[In]

Int[Sqrt[a + a*Cos[c + d*x]]*(A + C*Cos[c + d*x]^2)*Sec[c + d*x],x]

[Out]

(2*Sqrt[a]*A*ArcTanh[(Sqrt[a]*Sin[c + d*x])/Sqrt[a + a*Cos[c + d*x]]])/d + (2*a*C*Sin[c + d*x])/(3*d*Sqrt[a +
a*Cos[c + d*x]]) + (2*C*Sqrt[a + a*Cos[c + d*x]]*Sin[c + d*x])/(3*d)

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 2852

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]/((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[-2*(
b/f), Subst[Int[1/(b*c + a*d - d*x^2), x], x, b*(Cos[e + f*x]/Sqrt[a + b*Sin[e + f*x]])], x] /; FreeQ[{a, b, c
, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]

Rule 3060

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.
) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[-2*b*B*Cos[e + f*x]*((c + d*Sin[e + f*x])^(n + 1)/(d*f*(2*n + 3)*Sqrt
[a + b*Sin[e + f*x]])), x] + Dist[(A*b*d*(2*n + 3) - B*(b*c - 2*a*d*(n + 1)))/(b*d*(2*n + 3)), Int[Sqrt[a + b*
Sin[e + f*x]]*(c + d*Sin[e + f*x])^n, x], x] /; FreeQ[{a, b, c, d, e, f, A, B, n}, x] && NeQ[b*c - a*d, 0] &&
EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] &&  !LtQ[n, -1]

Rule 3125

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.)*((A_.) + (C_.)*
sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[(-C)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*((c + d*Sin[e + f*x])^(
n + 1)/(d*f*(m + n + 2))), x] + Dist[1/(b*d*(m + n + 2)), Int[(a + b*Sin[e + f*x])^m*(c + d*Sin[e + f*x])^n*Si
mp[A*b*d*(m + n + 2) + C*(a*c*m + b*d*(n + 1)) + C*(a*d*m - b*c*(m + 1))*Sin[e + f*x], x], x], x] /; FreeQ[{a,
 b, c, d, e, f, A, C, m, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] &&  !LtQ[m, -2^
(-1)] && NeQ[m + n + 2, 0]

Rubi steps \begin{align*} \text {integral}& = \frac {2 C \sqrt {a+a \cos (c+d x)} \sin (c+d x)}{3 d}+\frac {2 \int \sqrt {a+a \cos (c+d x)} \left (\frac {3 a A}{2}+\frac {1}{2} a C \cos (c+d x)\right ) \sec (c+d x) \, dx}{3 a} \\ & = \frac {2 a C \sin (c+d x)}{3 d \sqrt {a+a \cos (c+d x)}}+\frac {2 C \sqrt {a+a \cos (c+d x)} \sin (c+d x)}{3 d}+A \int \sqrt {a+a \cos (c+d x)} \sec (c+d x) \, dx \\ & = \frac {2 a C \sin (c+d x)}{3 d \sqrt {a+a \cos (c+d x)}}+\frac {2 C \sqrt {a+a \cos (c+d x)} \sin (c+d x)}{3 d}-\frac {(2 a A) \text {Subst}\left (\int \frac {1}{a-x^2} \, dx,x,-\frac {a \sin (c+d x)}{\sqrt {a+a \cos (c+d x)}}\right )}{d} \\ & = \frac {2 \sqrt {a} A \text {arctanh}\left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {a+a \cos (c+d x)}}\right )}{d}+\frac {2 a C \sin (c+d x)}{3 d \sqrt {a+a \cos (c+d x)}}+\frac {2 C \sqrt {a+a \cos (c+d x)} \sin (c+d x)}{3 d} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.11 (sec) , antiderivative size = 82, normalized size of antiderivative = 0.85 \[ \int \sqrt {a+a \cos (c+d x)} \left (A+C \cos ^2(c+d x)\right ) \sec (c+d x) \, dx=\frac {\sqrt {a (1+\cos (c+d x))} \sec \left (\frac {1}{2} (c+d x)\right ) \left (3 \sqrt {2} A \text {arctanh}\left (\sqrt {2} \sin \left (\frac {1}{2} (c+d x)\right )\right )+C \left (3 \sin \left (\frac {1}{2} (c+d x)\right )+\sin \left (\frac {3}{2} (c+d x)\right )\right )\right )}{3 d} \]

[In]

Integrate[Sqrt[a + a*Cos[c + d*x]]*(A + C*Cos[c + d*x]^2)*Sec[c + d*x],x]

[Out]

(Sqrt[a*(1 + Cos[c + d*x])]*Sec[(c + d*x)/2]*(3*Sqrt[2]*A*ArcTanh[Sqrt[2]*Sin[(c + d*x)/2]] + C*(3*Sin[(c + d*
x)/2] + Sin[(3*(c + d*x))/2])))/(3*d)

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(241\) vs. \(2(82)=164\).

Time = 7.43 (sec) , antiderivative size = 242, normalized size of antiderivative = 2.52

method result size
parts \(\frac {A \sqrt {a}\, \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {a \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \left (\ln \left (\frac {4 \sqrt {2}\, a \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+4 \sqrt {2}\, \sqrt {a \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \sqrt {a}+8 a}{2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+\sqrt {2}}\right )+\ln \left (-\frac {4 \left (\sqrt {2}\, a \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-\sqrt {2}\, \sqrt {a \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \sqrt {a}-2 a \right )}{2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-\sqrt {2}}\right )\right )}{\sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {a \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, d}+\frac {2 C \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) a \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \left (1+2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )\right ) \sqrt {2}}{3 \sqrt {a \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, d}\) \(242\)
default \(\frac {\cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {a \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \left (-4 C \sqrt {a}\, \sqrt {2}\, \sqrt {a \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+3 A \ln \left (\frac {4 \sqrt {2}\, a \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+4 \sqrt {2}\, \sqrt {a \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \sqrt {a}+8 a}{2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+\sqrt {2}}\right ) a +3 A \ln \left (-\frac {4 \left (\sqrt {2}\, a \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-\sqrt {2}\, \sqrt {a \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \sqrt {a}-2 a \right )}{2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-\sqrt {2}}\right ) a +6 C \sqrt {2}\, \sqrt {a \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \sqrt {a}\right )}{3 \sqrt {a}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {a \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, d}\) \(250\)

[In]

int((A+C*cos(d*x+c)^2)*sec(d*x+c)*(a+cos(d*x+c)*a)^(1/2),x,method=_RETURNVERBOSE)

[Out]

A*a^(1/2)*cos(1/2*d*x+1/2*c)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*(ln(4/(2*cos(1/2*d*x+1/2*c)+2^(1/2))*(2^(1/2)*a*co
s(1/2*d*x+1/2*c)+2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^(1/2)+2*a))+ln(-4/(2*cos(1/2*d*x+1/2*c)-2^(1/2))*(2^
(1/2)*a*cos(1/2*d*x+1/2*c)-2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^(1/2)-2*a)))/sin(1/2*d*x+1/2*c)/(a*cos(1/2
*d*x+1/2*c)^2)^(1/2)/d+2/3*C*cos(1/2*d*x+1/2*c)*a*sin(1/2*d*x+1/2*c)*(1+2*cos(1/2*d*x+1/2*c)^2)*2^(1/2)/(a*cos
(1/2*d*x+1/2*c)^2)^(1/2)/d

Fricas [A] (verification not implemented)

none

Time = 0.29 (sec) , antiderivative size = 139, normalized size of antiderivative = 1.45 \[ \int \sqrt {a+a \cos (c+d x)} \left (A+C \cos ^2(c+d x)\right ) \sec (c+d x) \, dx=\frac {3 \, {\left (A \cos \left (d x + c\right ) + A\right )} \sqrt {a} \log \left (\frac {a \cos \left (d x + c\right )^{3} - 7 \, a \cos \left (d x + c\right )^{2} - 4 \, \sqrt {a \cos \left (d x + c\right ) + a} \sqrt {a} {\left (\cos \left (d x + c\right ) - 2\right )} \sin \left (d x + c\right ) + 8 \, a}{\cos \left (d x + c\right )^{3} + \cos \left (d x + c\right )^{2}}\right ) + 4 \, {\left (C \cos \left (d x + c\right ) + 2 \, C\right )} \sqrt {a \cos \left (d x + c\right ) + a} \sin \left (d x + c\right )}{6 \, {\left (d \cos \left (d x + c\right ) + d\right )}} \]

[In]

integrate((A+C*cos(d*x+c)^2)*sec(d*x+c)*(a+a*cos(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

1/6*(3*(A*cos(d*x + c) + A)*sqrt(a)*log((a*cos(d*x + c)^3 - 7*a*cos(d*x + c)^2 - 4*sqrt(a*cos(d*x + c) + a)*sq
rt(a)*(cos(d*x + c) - 2)*sin(d*x + c) + 8*a)/(cos(d*x + c)^3 + cos(d*x + c)^2)) + 4*(C*cos(d*x + c) + 2*C)*sqr
t(a*cos(d*x + c) + a)*sin(d*x + c))/(d*cos(d*x + c) + d)

Sympy [F]

\[ \int \sqrt {a+a \cos (c+d x)} \left (A+C \cos ^2(c+d x)\right ) \sec (c+d x) \, dx=\int \sqrt {a \left (\cos {\left (c + d x \right )} + 1\right )} \left (A + C \cos ^{2}{\left (c + d x \right )}\right ) \sec {\left (c + d x \right )}\, dx \]

[In]

integrate((A+C*cos(d*x+c)**2)*sec(d*x+c)*(a+a*cos(d*x+c))**(1/2),x)

[Out]

Integral(sqrt(a*(cos(c + d*x) + 1))*(A + C*cos(c + d*x)**2)*sec(c + d*x), x)

Maxima [A] (verification not implemented)

none

Time = 0.37 (sec) , antiderivative size = 37, normalized size of antiderivative = 0.39 \[ \int \sqrt {a+a \cos (c+d x)} \left (A+C \cos ^2(c+d x)\right ) \sec (c+d x) \, dx=\frac {{\left (\sqrt {2} \sin \left (\frac {3}{2} \, d x + \frac {3}{2} \, c\right ) + 3 \, \sqrt {2} \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )} C \sqrt {a}}{3 \, d} \]

[In]

integrate((A+C*cos(d*x+c)^2)*sec(d*x+c)*(a+a*cos(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

1/3*(sqrt(2)*sin(3/2*d*x + 3/2*c) + 3*sqrt(2)*sin(1/2*d*x + 1/2*c))*C*sqrt(a)/d

Giac [A] (verification not implemented)

none

Time = 0.32 (sec) , antiderivative size = 114, normalized size of antiderivative = 1.19 \[ \int \sqrt {a+a \cos (c+d x)} \left (A+C \cos ^2(c+d x)\right ) \sec (c+d x) \, dx=-\frac {\sqrt {2} {\left (8 \, C \mathrm {sgn}\left (\cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right ) \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} + 3 \, \sqrt {2} A \log \left (\frac {{\left | -2 \, \sqrt {2} + 4 \, \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) \right |}}{{\left | 2 \, \sqrt {2} + 4 \, \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) \right |}}\right ) \mathrm {sgn}\left (\cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right ) - 12 \, C \mathrm {sgn}\left (\cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right ) \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )} \sqrt {a}}{6 \, d} \]

[In]

integrate((A+C*cos(d*x+c)^2)*sec(d*x+c)*(a+a*cos(d*x+c))^(1/2),x, algorithm="giac")

[Out]

-1/6*sqrt(2)*(8*C*sgn(cos(1/2*d*x + 1/2*c))*sin(1/2*d*x + 1/2*c)^3 + 3*sqrt(2)*A*log(abs(-2*sqrt(2) + 4*sin(1/
2*d*x + 1/2*c))/abs(2*sqrt(2) + 4*sin(1/2*d*x + 1/2*c)))*sgn(cos(1/2*d*x + 1/2*c)) - 12*C*sgn(cos(1/2*d*x + 1/
2*c))*sin(1/2*d*x + 1/2*c))*sqrt(a)/d

Mupad [F(-1)]

Timed out. \[ \int \sqrt {a+a \cos (c+d x)} \left (A+C \cos ^2(c+d x)\right ) \sec (c+d x) \, dx=\int \frac {\left (C\,{\cos \left (c+d\,x\right )}^2+A\right )\,\sqrt {a+a\,\cos \left (c+d\,x\right )}}{\cos \left (c+d\,x\right )} \,d x \]

[In]

int(((A + C*cos(c + d*x)^2)*(a + a*cos(c + d*x))^(1/2))/cos(c + d*x),x)

[Out]

int(((A + C*cos(c + d*x)^2)*(a + a*cos(c + d*x))^(1/2))/cos(c + d*x), x)